Серия встреч с ведущими российскими и зарубежными учеными в области финансовой и актуарной математики
ГЛОБАЛЬНЫЙ СЕМИНАР
За три года работы семинар стал ключевым событием финансовой математики в России
Формат: онлайн
Язык: русский / английский
Более 50 спикеров
Докладчики — ведущие мировые ученые и специалисты из индустрии
География экспертов и слушателей — от Лос-Анджелеса до Сиднея
Семинар является открытым для всех, кому интересна финансовая математика
РУКОВОДИТЕЛЬ СЕМИНАРА
Кабанов Юрий Михайлович
д.ф.-м.н., профессор
Председатель Совета директоров
Научный директор Фонда
Член Academia Europaea

ПРОГРАММА ОСЕННЕГО СЕМЕСТРА'24
21 | 09 | 2024
Павел Шевченко
Solving stochastic dynamic integrated climate-economy models
Тема:
13:00 (МСК)
Университет Маккуайр, Австралия
The classical dynamic integrated climate-economy (DICE) model has become the iconic typical reference point for the joint modelling of economic and climate systems, where all six model state variables (including carbon concentration, temperature, and economic capital) evolve over time deterministically and are affected by two controls (carbon emission mitigation rate and consumption). We consider the DICE model with stochastic shocks in various parts of the model and solve it under several scenarios as an optimal stochastic control problem to find the optimal policies in the presence of uncertainty. In the case of many stochastic shocks, to solve the problem we develop the least squares Monte Carlo (LSMC) method — a popular simulation method for solving optimal stochastic control problems in quantitative finance. To address the complexity and high dimensionality of the model, we incorporate deep neural network approximations in place of standard regression techniques within the LSMC framework.

This talk is based on the following papers:

1. A. Arandjelović, P.V. Shevchenko, T. Matsui, D. Murakami, T.A. Myrvoll (2024). Solving stochastic climate-economy models: A deep least-squares Monte
Carlo approach. http://arxiv.org/abs/2408.9 642

2. P.V. Shevchenko, D. Murakami, T. Matsui, T.A. Myrvoll (2022). Impact of COVID-19 type events on the economy and climate under the stochastic DICE model. Environmental Economics and Policy Studies 24, 459−476. https://ssrn.com/abstract=3 954 108
28 | 09 | 2024
Юрий янович
15:00 (МСК)
Повышение доступности и надежности блокчейнов
Тема:
Сколтех, Россия
Блокчейны характеризуются алгоритмами синхронизации данных между узлами сети (консенсусом), способами хранения данных и исполняемыми на них программами (смарт-контрактами). В докладе будут рассмотрены каждый из аспектов на примере избранных задач: отказоустойчивая генерация случайных чисел, деревья для доказуемых ответов на пользовательские запросы и системные риски платформы для кредитования под залог криптовалюты.

Литература

[1] Krasnoselskii, M., Melnikov, G., & Yanovich, Y. (2020). No-dealer: Byzantine fault-tolerant random number generator. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS).

[2] Krasnoselskii, M., Melnikov, G., & Yanovich, Y. (2021). DisCO: Peer-to-Peer Random Number Generator in Partial Synchronous Systems. In 2021 3rd Conference on Blockchain Research & Applications for Innovative Networks and Services (BRAINS).

[3] Chaleenutthawut, Y., Davydov, V., Evdokimov, M., Kasemsuk, S., Kruglik, S., Melnikov, G., & Yanovich, Y. (2024). Loan Portfolio Dataset From MakerDAO Blockchain Project. IEEE Access.
05 | 10 | 2024
пётр танков
Optimal stopping and divestment timing under scenario ambiguity and learning
Тема:
15:00
Национальная школа статистики и экономического управления, Франция
Aiming to analyze the impact of environmental transition on the value of assets and on asset stranding, we study optimal stopping and divestment timing decisions for an economic agent whose future revenues depend on the realization of a scenario from a given set of possible futures. Since the future scenario is unknown and the probabilities of individual prospective scenarios are ambiguous, we adopt the smooth model of decision making under ambiguity aversion of Klibanoff et al (2005), framing the optimal divestment decision as an optimal stopping problem with learning under ambiguity aversion. We then prove a minimax result reducing this problem to a series of standard optimal stopping problems with learning. The theory is illustrated with two examples: the problem of optimally selling a stock with ambigous drift, and the problem of optimal divestment from a coal-fired power plant under transition scenario ambiguity.
12 | 10 | 2024
ян долинский
What if we knew what the future brings? Optimal investment for a frontrunner with price impact
Тема:
15:00

Еврейский университет в Иерусалиме, Израиль
In this paper we study optimal investment when the investor can peek some time units into the future, but cannot fully take advantage of this knowledge because of quadratic transaction costs. In the Bachelier setting with exponential utility, we give an explicit solution to this control problem with intrinsically infinite-dimensional memory. This is made possible by solving the dual problem where we make use of the theory of Gaussian Volterra integral equations. Joint work with Peter Bank and Miklos Rasonyi.
19 | 10 | 2024
Василий Колокольцов
On a new theory of optimal taxation
Тема:
15:00

МГУ им. М.В. Ломоносова, Россия
The Nobel-prize winning Mirrlees' theory of optimal taxation inspired a long sequence of research
on its refinement and enhancement. However, an issue of concern has been always the fact that, as was shown in many publications, the optimal schedule in Mirrlees' paradigm of maximising the total utility (constructed from individually optimised individual ones) usually did not lead to progressive taxation (contradicting the ethically supported practice in developed economies), and often even assigned minimal tax rates to the higher paid strata of society.
To begin with, we shall support this conclusion by proving a theorem that, under the standard paradigm,
the optimal tax schedule in piecewise-linear environment and under the simplest natural utility function is just taking no taxes at all.
The main objective of the talk is to suggest a new paradigm for optimal taxation, where instead of just total utility maximization one introduces the standard deviation of utility as a second parameter standing for social inequality.
We show that this approach leads to transparent and easy calculated optimal progressive tax,
the level being defined by a parameter of social inequality-tolerance that is analogous to the risk-tolerance coefficient
in the financial context of the Markovitz optimal portfolio theory.
26 | 10 | 2024
АНТОН БЕЛЯКОВ
Условия неограниченного экономического роста в модели оптимальных вложений в развитие технологий
Тема:
15:00

МГУ им. М.В. Ломоносова, Россия
Исследуется расширение задачи об оптимальных вложениях в два фактора производства (физический и человеческий капитал), для произвольной линейно-однородной производственной функции, удовлетворяющей предельным условиям на частные производные, где максимизируется суммарная дисконтированная функция полезности от потребления за бесконечное время плюс полезность от реализации капитала в «конце» процесса. Предполагается, что человеческий капитал отражает уровень технологического развития, воплощённого в труде, и растёт со скоростью равной потраченным на это средствам. В отсутствии ограничений сверху на интенсивность потребления и вложений в человеческий капитал найдены оптимальные решения и условия, когда будут осуществляться вложения в человеческий капитал. Показано, что при достаточно малой норме дисконтирования полезности и достаточно большой относительной несклонности к риску потребителя для него оптимально вначале наращивать только физический капитал, пока не сравняются предельные производительности физического и человеческого капиталов, а затем инвестировать в оба вида капитала в постоянной пропорции, что приводит к неограниченному росту.
02 | 11 | 2024
Дилан ПосСАМАИ
A target approach to Stackelberg games
Тема:
Федеральный институт технологии, Швейцария
15:00
In this paper, we provide a general approach to reformulating any continuous-time stochastic Stackelberg differential game under closed-loop strategies as a single-level optimisation problem with target constraints. More precisely, we consider a Stackelberg game in which the leader and the follower can both control the drift and the volatility of a stochastic output process, in order to maximise their respective expected utility. The aim is to characterise the Stackelberg equilibrium when the players adopt "closed-loop strategies", i.e. their decisions are based solely on the historical information of the output process, excluding especially any direct dependence on the underlying driving noise, often unobservable in real-world applications. We first show that, by considering the-second-order-backward stochastic differential equation associated with the continuation utility of the follower as a controlled state variable for the leader, the latter’s unconventional optimisation problem can be reformulated as a more standard stochastic control problem with stochastic target constraints. Thereafter, adapting the methodology developed by Soner and Touzi or Bouchard, Élie, and Imbert, the optimal strategies, as well as the corresponding value of the Stackelberg equilibrium, can be characterised through the solution of a well-specified system of Hamilton-Jacobi-Bellman equations. For a more comprehensive insight, we illustrate our approach through a simple example, facilitating both theoretical and numerical detailed comparisons with the solutions under different information structures studied in the literature. This is a joint work with Camilo Hernández, Nicolás Hernández Santibáñez, and Emma Hubert.
09 | 11 | 2024
Оливье Геан
An Overview of Market Making Models and Recent Applications in the Gold Market
Тема:
15:00
Университет Париж 1 Пантеон-Сорбонна, Франция
Since the seminal work of Ho and Stoll, later refined by Avellaneda and Stoikov, algorithmic market-making models have evolved to incorporate increasingly realistic features such as trade sizes, complex price dynamics, tiering, externalization, and market impact. These models have been applied to a wide range of assets, from illiquid corporate bonds to highly liquid foreign exchange markets to cryptocurrencies (price-aware AMMs). This talk will provide an overview of the key developments of the past decade, highlighting both theoretical advancements and practical applications. It will then focus on recent applications of these models in the gold market by Barzykin, Bergault and I.
16 | 11 | 2024
Мартин Ларссон
The numeraire e-variable and reverse information projection
Тема:
15:00
Университет Карнеги-Меллон, США
A recent approach to statistical inference is based on the concept of an e-variable: a nonnegative sample statistic whose expected value is at most one if a given null hypothesis is true. This approach has been found to produce strong statistical error bounds and high statistical power and is easily extendible to sequential, or online, settings. E-variables admit a natural interpretation as the payoff of a financial bet. In this talk I will discuss how classical ideas from mathematical finance, in particular the numeraire portfolio, enables an optimality theory for e-variables that significantly generalizes earlier results. Our results also lead to a duality theory which yields the so-called reverse information projection in complete generality. Our work showcases the power of financial methods in a setting where information-theoretic tools have traditionally been preferred. (Joint work with Aaditya Ramdas and Johannes Ruf.)
23 | 11 | 2024
чаын арарат
Systemic Values-at-Risk: Computation and Convergence
Тема:
15:00
Университет Билкент, Турция
We investigate the convergence properties of sample-average approximations (SAA) for set-valued systemic risk measures. We assume that the systemic risk measure is defined using a general aggregation function with some continuity properties and value-at-risk applied as a monetary risk measure. Our focus is on the theoretical convergence of its SAA under Wijsman and Hausdorff topologies for closed sets. After building the general theory, we provide an in-depth study of an important special case where the aggregation function is defined based on the Eisenberg-Noe network model. In this case, we provide mixed-integer programming formulations for calculating the SAA sets via their weighted-sum and norm-minimizing scalarizations. To demonstrate the applicability of our findings, we conduct a comprehensive sensitivity analysis by generating a financial network based on the preferential attachment model and modeling the economic disruptions via a Pareto distribution.
30 | 11 | 2024
Юрий Артемович Кутоянц
Adaptive Kalman-Bucy Filters. Low Noise Observations.
Тема:
15:00
Университет Ле-Мана, Франция
Several models of partially observed diffusion processes depending on unknown parameters are presented. The proposed algorithms of adaptive Kalman-Bucy filters and parameter estimators have recurrent structure and the questions of their asymptotic optimality are discussed. The properties of the filters and estimators are studied in the asymptotics of small noise. For some nonlinear partially observed systems the construction and properties of the corresponding extended adaptive Kalman filters are discussed too.
07 | 12 | 2024
Миклош Расони
Rate estimates for total variation distance
Тема:
15:00
HUN-REN Математический институт имени Альфреда Реньи, Венгрия

For algorithms of machine learning, rate estimates are often provided in the Wasserstein metric or some variant thereof. There has been spectacular recent progress in the techniques for establishing such estimates.
At the same time, powerful methods have been developed in Malliavin calculus that enable to infer total variation convergence from weak convergence.
After presenting an overview of the developments above, we show some new results on total variation convergence that do not rely on Malliavin calculus nevertheless they are applicable to various stochastic systems.
Агостино Каппони
14 | 12 | 2024
A Continuous Time Framework for Sequential Goal-Based Wealth Management
Тема:
15:00
Колумбийский университет, США
We develop a continuous time framework for sequential goals-based wealth management.
A stochastic factor process drives asset price dynamics as well as the client’s goal amount and income. We prove the weak dynamic programming principle for the value function of our control problem, which we show to be the unique viscosity solution of the corresponding Hamilton-Jacobi-Bellman equation. We develop an equivalent and computationally efficient representation of the Hamiltonian, which yields the optimal portfolio within a factor-dependent opportunity set defined by the maximum and minimum variance hypersurfaces. Our analysis shows that it is optimal to fund an expiring goal up to the level where the marginal benefit of additional fundedness is exceeded by the opportunity cost of diverting wealth from future goals. An all-or-nothing investor is more risk averse towards an approaching goal deadline if she is well funded, but more risk seeking if she is not on track with upcoming goals, compared to an investor with flexible goals.
Предыдущие выступления